Ubiquinone at center N is responsible for triphasic reduction of cytochrome b in the cytochrome bc(1) complex.

نویسندگان

  • C H Snyder
  • B L Trumpower
چکیده

We have examined the pre-steady state reduction kinetics of the Saccharomyces cerevisiae cytochrome bc(1) complex by menaquinol in the presence and absence of endogenous ubiquinone to elucidate the mechanism of triphasic cytochrome b reduction. With cytochrome bc(1) complex from wild type yeast, cytochrome b reduction was triphasic, consisting of a rapid partial reduction phase, an apparent partial reoxidation phase, and a slow rereduction phase. Absorbance spectra taken by rapid scanning spectroscopy at 1-ms intervals before, during, and after the apparent reoxidation phase showed that this was caused by a bona fide reoxidation of cytochrome b and not by any negative spectral contribution from cytochrome c(1). With cytochrome bc(1) complex from a yeast mutant that cannot synthesize ubiquinone, cytochrome b reduction by either menaquinol or ubiquinol was rapid and monophasic. Addition of ubiquinone restored triphasic cytochrome b reduction, and the duration of the reoxidation phase increased as the ubiquinone concentration increased. When reduction of the cytochrome bc(1) complex through center P was blocked, cytochrome b reduction through center N was biphasic and was slowed by the addition of exogenous ubiquinone. These results show that ubiquinone residing at center N in the oxidized cytochrome bc(1) complex is responsible for the triphasic reduction of cytochrome b.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibitory analogs of ubiquinol act anti-cooperatively on the Yeast cytochrome bc1 complex. Evidence for an alternating, half-of-the-sites mechanism of ubiquinol oxidation.

The cytochrome bc(1) complex is a dimeric enzyme that links electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which ubiquinol is oxidized at one center in the enzyme, referred to as center P, and ubiquinone is re-reduced at a second center, referred to as center N. To understand better the mechanism of ubiquinol oxidation, we have examined the interaction o...

متن کامل

The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex.

Production of reactive oxygen species (ROS) by the mitochondrial respiratory chain is considered to be one of the major causes of degenerative processes associated with oxidative stress. Mitochondrial ROS has also been shown to be involved in cellular signaling. It is generally assumed that ubisemiquinone formed at the ubiquinol oxidation center of the cytochrome bc(1) complex is one of two sou...

متن کامل

The dimeric structure of the cytochrome bc(1) complex prevents center P inhibition by reverse reactions at center N.

Energy transduction in the cytochrome bc(1) complex is achieved by catalyzing opposite oxido-reduction reactions at two different quinone binding sites. We have determined the pre-steady state kinetics of cytochrome b and c(1) reduction at varying quinol/quinone ratios in the isolated yeast bc(1) complex to investigate the mechanisms that minimize inhibition of quinol oxidation at center P by r...

متن کامل

Anti-cooperative oxidation of ubiquinol by the yeast cytochrome bc1 complex.

We have investigated the interaction between monomers of the dimeric yeast cytochrome bc(1) complex by analyzing the pre-steady and steady state activities of the isolated enzyme in the presence of antimycin under conditions that allow the first turnover of ubiquinol oxidation to be observable in cytochrome c(1) reduction. At pH 8.8, where the redox potential of the iron-sulfur protein is appro...

متن کامل

Rapid electron transfer between monomers when the cytochrome bc1 complex dimer is reduced through center N.

We have obtained evidence for electron transfer between cytochrome b subunits of the yeast bc(1) complex dimer by analyzing pre-steady state reduction of cytochrome b in the presence of center P inhibitors. The kinetics and extent of cytochrome b reduced by quinol in the presence of variable concentrations of antimycin decreased non-linearly and could only be fitted to a model in which electron...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 274 44  شماره 

صفحات  -

تاریخ انتشار 1999